
Ben Livshits
Microsoft Research

Redmond, Washington

2

RePriv
Verifiably

secure extensions

Language-based foundations

• Provide missing functionality

• Faster evolution that browsers

• Embed themselves into browser

• …which has security implications

RePriv
Re-envisioning in-browser privacy

Network protocols Browser

Personalization

Interest mining

Verification

Languages

Type systems

Provable privacy

3

Google news

Amazon

New York Times

Netflix

Privacy
concerns

Share data to get
personalized

results

4

Approach, Opportunity & Privacy

• Broad applications:

– Site personalization

– Personalized search

– Ads

• User data in browser

• Control data release

Browsing history

User interest profile

Distill

Top: Computers: Security: Internet: Privacy

Top: Arts: Movies: Genres: Film Noir

Top: Sports: Hockey: Ice Hockey

Top: Science: Math: Number Theory

Top: Recreation: Outdoors: Fishing

12
1

7

9

4

5
6

3

8

10

11

2

Amazon

12
1

7

9

4

5
6

3

8

10

11

2

Netflix

12
1

7

9

4

5
6

3

8

10

11

2

Google

12
1

7

9

4

5

10

6

3

8

11

2

Your browser

5

Scenario #1: Online Shopping

Interest
profile

Interest
profile

bn.com would like to learn your top interests.
We will let them know you are interested in:

• Science
• Technology
• Outdoors

 Accept Decline

6

RePriv Protocol

7

Scenario #2: Personalized Search

“weather” weather.com

“sports” espn.com

“movies” imdb.com

“recipes” epicurious.com

Personalized Results

Would you like to install an extension
called “Bing Personalizer” that will:

• Watch mouse clicks on bing.com
• Modify appearance of bing.com
• Store personal data in browser

Accept Decline

8

Contributions of RePriv

9

• An in-browser framework for collecting &
managing personal data to facilitate
personalization.

RePriv

• Efficient in-browser behavior mining & controlled
dissemination of personal data.

Core Behavior
Mining

•A framework for integrating verified third-party
code into the behavior mining & dissemination of
RePriv.

RePriv miners

•Evaluation of above mechanisms on real browsing
histories & two in-depth case studies.

Real-world
Evaluation

Core Mining

• Taxonomy from first two
levels of ODP taxonomy
– ~450 categories total
– 20 top-level categories
– Overlap exists

• Naïve Bayes
– All categories equally likely
– Training: min(3000, #

pages) sites per category
– Attribute words occur in at

least 15% of docs for ≥1
category

• Classification is fast

enough: O(c•n)
– n is # words in document
– c is # document categories

Top

Science
Physics

Math

Sports Football

11

Global Mining Convergence

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

A
vg

. D
is

ta
n

ce
 F

ro
m

 F
in

al

% History Complete

Converges quite fast

12

RePriv vs. the White Pages

Source:
WebMii.com

13

p
ro

fi
le

 c
o

n
fi

d
e

n
ce

o
f

o
b

se
rv

e
r

sa
m

p
le

s

RePriv Miners

14

^

Miner Verification Strategy

• Untrusted miners are written in Fine

• Refined types on security-critical arguments to reflect policy needs

• Policy at top of source code

• Won’t compile unless code follows policy

15

Miner Name C# LoC Fine LoC Verif. Time

TwitterMiner 89 36 6.4

BingMiner 78 35 6.8

NetflixMiner 112 110 7.7

GlueMiner 213 101 9.5

Netflix Example

• Update interest profile
based on Netflix.com
interactions
– Watches clicks on rating links,

updates store

– Reads store to find recently-
viewed movies by genre

• Can provide this
information on request to
– fandango.com

– amazon.com

– metacritic.com

114 lines of Fine code

assume ExtensionId "netflixminer"

assume forall (s:string) . (ExtensionId s) => CanUpdateStore (P "netflix.com" s)

assume forall (s:string) . CanReadDOMId "netflix.com" s

assume CanReadDOMClass "netflix.com" "rv1"

assume CanReadDOMClass "netflix.com" "rv2"

assume CanReadDOMClass "netflix.com" "rv3"

assume CanReadDOMClass "netflix.com" "rv4"

assume CanReadDOMClass "netflix.com" "rv5"

assume CanCaptureEvents "onclick" (P "netflix.com" "netflixminer")

assume CanServeInformation "fandango.com" (P "netflix.com" "netflixminer")

assume CanServeInformation "amazon.com" (P "netflix.com" "netflixminer")

assume CanServeInformation "metacritic.com" (P "netflix.com" "netflixminer")

assume CanHandleSites "netflix.com"

assume CanReadStore (P "netflix.com" "netflixminer")

assume CanReadLocalFile "moviegenres.txt"

let doGetMovies genre cdom =

 …

 let flixEnts = GetStoreEntriesByTopic

 myprov "movie" in

 let genreFlix = bind myprov flixEnts

 (filterByGenre genre) in

 ExtensionReturn cdom myprov genreFlix

17

EXPERIMENTAL EVALUATION

18

^

Privacy-Aware News Personalization

Map RePriv intereststo del.icio.us topics

Query personal store for top interests

Ask del.icio.us API for “hot” stories in
appropriate topic areas from nytimes.com

Replace nytimes.com front page with
del.icio.us stories

19

Privacy Policy

Change TextContent of
selected anchor and div
elements on nytimes.com

Query del.icio.us with
top interest data

Change “href” attribute of
anchor elements on
nytimes.com

20

Evaluation Process

Technology/Web 2.0
Technology/Mobile
Science/Chemistry
Science/Physics

• 2,200 questions
• Over 3 days
• Types of results

– Default
– Personalized
– Random

 21

News Personalization: Effectiveness

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

R
an

d
o

m

D
e

fau
lt

P
e

rso
n

alized

User Relevance Score

Most responders
rated highly!

Most responders
rated poorly

22

Verified Security
for Browser Extensions

Type systems

ML

Verification and analysis

Fine

JavaScript

23

24

"update_url":"http://clients2.google.com/service/...",

"name": "Twitter Extender", "version": "2.0.3",

"description": "Adds new Features on Twitter.com ",

"page_action": { ... }, "icons": { ... }, \\

"content_scripts": [{

"matches": [

 "http://twitter.com/*", "https://twitter.com/*"],

 "js": ["jquery-1.4.2.min.js","code.js"]

}],

"background_page": "background.html",

"permissions": ["tabs", "http://api.bit.ly/"]

Permission # %

all https 143 12%

all http 199 17%

wildcard * 536 47%

history (tabs) 694 60%

1,139 popular
Chrome extensions

60% of all extensions are grossly over-privileged (access to complete history)

similar to InPrivate Filtering
(IE8), but available on other
browsers

25
Moral: security manifests rendered useless by permissively over-privileged extensions

Contributions

26

• Large-scale study of >1,000 Chrome extensions

• Analyze their manifests for security privileges

• Conclude that many or most are over-privileged

Study of Chrome
extensions

• Policy language based on Datalog for specifying fine-grained
authorization and data flow policies

• Visualization tools to “apply” authorization policies to web pages
Datalog-based policies

• Formalize the semantics of security policies and extensions in an
execution model with arbitrary interleavings

• Security property, (L;P)-safety, suitable for use with extensions that
interact with other, untrusted code

Semantics of policies
and extensions

• Programming 17 extensions in Fine covering a range of fine-grained
authorization and information flow properties for each, and
automatically verifying for policy compliance

• These include several widely-used Chrome extensions, showing
that our model brings benefits to legacy extension architectures

Extensions
implemented

• Extend Fine compiler with a code generator that emits JavaScript
(in addition to .NET bytecode)

• Extension development in a platform-independent way, allowing
for deployment in IE 8, Chrome, Firefox, and C3

Retargeting to
multiple browsers

Our Goals

• Explicit and
expressive
policy language

• Automatic
verification

• Retargeting for
multiple
browsers

27

Fine compiler

ext.f9 policy.f9

.NET JavaScript JavaScript

Contrast

• Curating process

– Arbitrary

– Too permissive

– Time-consuming

• Difficult to port

• Code in C/C++ or
JavaScript is difficult
to check

28

Fine compiler

ext.f9 policy.f9

.NET JavaScript JavaScript

FF overlays

COM-based extensions

Chrome JS +
manifest

EXAMPLE: FACEBOOK EXTENSION

29

^

30

https://api.del.icio.us/v1/posts/add?
url=http://people.csail.mit.edu/jeanyang&
description=Jean+Yang

31

https://api.del.icio.us/v1/posts/add?
url=http://people.csail.mit.edu/jeanyang&
description=Jean+Yang

32

let name = document.getName() in
let website = document.getWebsites()[0] in
 ...

getName and
getWebsites
do not exist. ..

:-(

How Do We Pattern-match?

33

lbls = document.getElementsByClassName("label")

> [<th class="label">Email:</th>;

 <th class="label">Address:</th>;

 <th class="label">Website:</th>;

 ...]

websiteLbl = (filter isWebsite lbls)[0]

> <th class="label">Website:</th>

websiteLbl.nextSibling

> <td class="data"> ...

35

Extension Name Extension Behavior

PrintNewYorker Appends “?printable=true” to internal links
on newyorker.com

Google Reader client Sends RSS feed links to Google Reader

Gmail checker Rewrites “mailto:” links to open Gmail’s
compose page

Bookmarking Sends selected text to delicious.com

Dictionary lookup Queries online dictionary with selection;
displays definition in a floating <div>

Facebook data miner Sends friends’ web - addresses to
delicious.com

JavaScript toolbox Edits selected text

Password manager Stores and retrieves passwords on each page

Magnify under mouse Modifies CSS on the page

Short URL expander Sends URLs to longurlplease.com

Typography Modifies values of <input> elements

POLICIES IN FINE

36

^

37

type elt

val getAttr :
 elt
 -> string
 -> string

Native DOM
elements, abstract to

Fine

Defined in
F#/JavaScript with

this type

38

assume (e:elt) . EltTagName e "a"
 CanReadAttr e "href"

type elt

val getAttr :
 e:elt
 -> { key:string | CanReadAttr e key }
 -> string

val getTagName :
 elt
 -> string

Precondition

39

assume (e:elt) . EltTagName e "a"
 CanReadAttr e "href"

type elt

val getAttr :
 e:elt
 -> { key:string | CanReadAttr e key }
 -> string

val getTagName :
 e:elt
 -> { name:string | EltTagName e name }

Postcondition

40

assume (e:elt) . EltTagName e "a"
 CanReadAttr e "href"

type elt

val getAttr :
 e:elt
 -> { key:string | CanReadAttr e key }
 -> string

val getTagName :
 e:elt
 -> { name:string | EltTagName e name }

// code
let getLink elt =
 if getTagName elt = "a" then
 // true EltTagName elt "a"
 getAttr elt "href" // requires CanReadAttr elt "href"
 else
 "not a link"

1. No runtime overhead (fast)

2. No runtime security exceptions (robust)

3. Fine + Z3 check pre- and post-conditions

Postcondition

41

assume (e:elt) . CanReadAttr e "class"

assume (label:elt), (labelText:elt) .
 EltParent labelText label
 && EltAttr label "class" "label"
 CanReadValue labelText

assume (data:elt), (label:elt), (labelText:elt),
 (website:elt), (parent:elt) .
 EltParent data parent
 && EltParent label parent
 && EltParent website data
 && EltParent labelText label
 && EltAttr label "class" "label"
 && EltTextValue labelText "Website:“

 CanReadAttr website "href"

Can read
all "class"
attributes

Can read
all data
labels data and

label are
siblings via

parent

(L;P)-safety: Semantics of policies

• Execution of browser extensions interleaved with
JS-code on a web page

Key feature of (L;P)-safety: Security of an extension
is independent of effects of JS on the page

Security of browser does not depend on the page
currently being viewed

Simply programming model: extension author
does not have to consider JS interleavings in
order to comply with security policy

42

Safety by typing

Main theorem:
• Given a Datalog policy P, a set of ground facts L,

an environment Γ such that Γ |= L, a program e
and a type t.

• P; Γ |- e : t => e is (L;P)-safe

Reduction relation: P |- (L;e) (L’;e’)

– Reduction steps are guarded by policy queries
evaluated over a set of accumulated ground facts L

– Theorem says: well-typed programs never raise
security exceptions

43

Visualizing Policies

44

Experimental Summary

45

• Variety of extension types

• Over 1,500 LOC total

• Many extensions ported
from Chrome
– Only the content script in

Fine

– Compiled to JavaScript using
a new Fine backend

– Much of the code remains in
the extension core

http://research.microsoft.com/~livshits/

Ben Livshits
Microsoft Research

Redmond, Washington

…with help from Matt Fredrikson, Arjun

Guha, Nikhil Swamy, and others

